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Abstract

The equilibrium and stability properties of radiating plasma
boundary layers are checked by means of simple analytical
and numerical models with some degree of sophistication
regarding the radiative characteristics of the atomic species
present in the plasma. The objective of these estimates is
information on such properties of radiating layers as their
thickness, location, temperature, etc., on the magnitude of
the energy fluxes that can be removed from the plasma by
means of impurity radiation at tolerable impurity levels,
and on the stability of such layers.

The main body of this analysis was completed in cooperation
with W.S. Goedheer of FOM-Instituut, Jutphaas, in the spring
of 1980.




ANALYSIS OF RADIATING PLASMA BOUNDARY LAYERS
L.L. Lengyel,

Max-Planck-Institut fir Plasmaphysik, EURATOM Association,
D-8046 Garching, Germany.

Introduction

Transport calculations pedformed for ZEPHYR and other tokamak de-
vices (see, for example, /1/) have indicated the existence of cer-
tain discharge regimes and plasma parameter ranges associated with
intense cooling of the outer plasma layer by impurity radiation and
with simultaneous reduction of the outwardly directed energy flux
carried by plasma particles. The possible formation of such a rela-
tively cold boundary layer between the plasma core and the wall has
significant practical implications: slow-dcwn of the energetic CX
neutrals emanating from the plasma core, reduction of wall sputte-
ring and impurity influx, etc.. The process may be self-regulating:
an increase of the wall sputtering and impurity influx could lead
to increased impurity radiation in the boundary layer and thus to
enhanced shielding, which would reduce wall sputtering and impurity
influx, etc.. The functions envisaged for such a radiating plasma
boundary layer are essentially the same as those of a cold gas blan-

ket first proposed by B. Lehnert (see, for example, /2/).

In the present analysis, the equilibrium and stability properties
of radiation layers are checked by means of simple analytical and
numerical models with some degree of sophistication regarding the
radiative properties of the atomic species present in the plasma.
In parts of the calculations, advantage has been taken of the

numerical programs developed by Goedheer /3/ for computing the



ionization, recombination, and radiation rates of hydrogen species
by means of a multi-level atomic model without the usual equilibrium
assumptions. The radiation emitted by impurity ions was calculated
by assuming corona equilibrium and using the average ion model of
Post et al. /4/. The time-dependent numerical programs used in

parts of the calculations were generated by W. Schneider with the

aid of the program generator described in /5/.

The objective of these calculations and estimates was to obtain in-
formation on the properties of radiation layers such as thickness,
location, temperature etc.,on the magnitude of the energy flux that
can be removed from the plasma by means of impurity radiation at

tolerable impurity levels, and on the stability of such layers.

1. Conduction-Radiation Balance

In a first approximation, the convective fluxes had been neglected
and the local energy balance had been assumed to be given by the

asymptotic solution ( t — o0 ) of the time-dependent equation

(1.1) (ZMQT) my Ko —-) - CmmP(T)
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supplemented by the steady-state boundary conditions
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In the above expressions, T (eV), ng (cm_3), ng (cm—3), Xé (cmz/s),
and P (ergs. cm3/s) denote, respectively, the plasma temperature,
the electron and impurity densities, the thermal conductivity of the

electrons, and the radiation loss function characterizing the im-

purity radiation. The constant multiplier C is given as

12

c = 0.625 x 10 eV / ergs.

The function P(T) was calculated in this section by means of the



average ion model (corona equilibrium) of Post et al. /4/. Oxygen,
silicon, iron,and tungsten were considered as possible impurities
(see Fig. 1). The boundary temperatures were set high enough

(Tw = 10 eV, Tpl = 103 eV) to allow hydrogen radiation to be ne-
glected. An arbitrary T(o, x) distribution was assumed as initial

condition.

If one assumes negligible electron and impurity density variations
across the radiating layer (or approximates the respective distribu-
tions by the average values of the respective functions) and uses a
temperature-corrected Alcator scaling law for Xe:
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n being constant, eq. (1.1) reduces to
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1.1 Asymptotic Solution

The pair of time-independent equations that defines the asymptotic

solution of eq. (1.1) can be written as follows:

(1.4 a) Q(Q_{ﬂ_‘_) _ ’Vlexe dT
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(1.4 b) MQMIP(T)= - CLQ— = Kad ,

dx

where Q is the energy flux and 'Rad' represents the power radiated

per unit volume. As can readily be seen, egs. (1.4) reduce to




’V‘a‘V‘I{P(T) _E____ AR

— )

(1.5) Q = Mexe T

the solution of which is given by T
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Introducing the notation

(1.6 b) Xog(ﬂ = MeXe ’

;to being the temperature-independent part of neﬁce,the solution

(1.6) may be rewritten as
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In the case of temperature-independent Alcator scaling one has

(1.6 ¢)

1l

£(T) = 1, and a simple expression is obtained for the ratio of the

heat fluxes at the left and right boundaries:
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)%/C = 106. As before, the units of T, n, P, and Q are (eV), (cm—3),
(ergS'cm3/s), and (ergs/cmz-s), respectively. The value of the integral

R is shown in Fig. 2 for various species (impurities) as a function

of the plasma temperature.

For the case with n, .= const, np = const, Goedheer /6/ suggested a
simple way of reducing egs. (1.4) to (1.7): If one defines
-2
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and assumes f(T) = 1, egs. (1.4) reduce to
- ciQ*
(1.8 a) *=-/_(_°5._' 1) = - —
Q C, dx* ? ?(> dxﬁ'
and the solution (1.7) can be written for any combinations of ng
and n, as
: \/
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Equation (1.5) may be used for generating analytical solutions for
a number of simple cases. For example, Lackner /7/ has estimated
the heat flux along the magnetic field lines in the divertor chamber

of a divertor tokamak by assuming P> € const = p__, nI/ne = const =c
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and solving eq. (1.5). The solution is given for this case as

Q')‘ - &t/ = lceqiey (MeoTeo )‘l Q\l :
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As before, the units of N Te’ and P(T) are (cm_3), (eV), and
(ergs-cm3-s_1), respectively. Figure 2a shows the temperature varia-
tion ofRu (T) for four impurities: oxygen, silicon, iron, and

tungsten.

As can readily be seen from eq. (1.7), the radiation flux may be
increased (and thus the thermal flux carried by material particles

to the wall decreased) by increasing the average or local values

of the electron and/or impurity densities, the value of the effective

thermal conductivity in the radiation layer, or the value of the

integral R(T), i.e. by selecting impurities with higher emissivities.

II




However, it should be noted that impurities with higher emissive
power usually emit at higher temperatures, i.e. the radiation layer

becomes shifted towards the center of the plasma.

The maximum flux that can be radiated away (zero flux at the wall,

see eq.(1.6)) is given by
. \/4
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Once the value of Q. 1is known, the thickness of the radiating layer

can be determined by means of the integral (see egs. (1.4) and (1.6)):

o8 e [ e Sel()4T/C
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Figure 3 shows the variation of QW/Qpl as a function of Q 17 for

p
T - 10 eV, T; = 1 keV, iron impurity with np = 5 X 1019 cn™3,
and for two electron densities n, = 10 and 3 x 1014 cm_3. Slmple
Alcator scaling with £(T) = 1 has been assumed.The numbers displayed

along the curves represent the corresponding radiation layer thick-

nesses (cm).

1.2 Perturbation Analysis

If one assumes that the radiation power P(T) is a function of some

power of the temperature,i.e.
(1.12) P(1). vz ahudl TBhs .7 g @ AQ/"‘(P/L&&MT

and applies a periodic temperature perturbation of the form

A
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to eqg. (1.1), the following expression is obtained for the real
part of the growth rate T(ne and np being assumed to be constant

and given):
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For simple (temperature-independent)Alcator scaling n 0
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and this expression reduces to

e T { m: P(1)
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i.e. the solution is stable at any perturbation wavelength, provided

A >0, i.e. the radiation power emitted increases with increasing
temperature. (A spontaneous temperature increase is damped by increased
radiative losses). This is, however, not always the case (see Fig. 1).
As could be expected, if P(T) decreases with increasing temperature,
i.e. & £ 0, the solution becomes unstable for wavelengths exceeding
a critical value
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Since X P(T)/T = dP/dT can be computed for any given radiation loss
function P(T), the maximum admissible wavelength is a unique function

of the temperature. Figure 4 shows the variation of A sk with
temperature for iron impurity (nI =5 x 1010 cm_3).

This analysis cannot answer the question whether in a realistic boundary
layer the wavelength can locally exceed the critical value. The answer
is, however, provided by a straightforward numerical solution of the

time-dependent problem.

It should be noted, furthermore, that the net effect of a temperature-
dependent thermal conductivity cannot be assessed directly from eq. (1.14)
(n appears with opposite signs in the second and third terms on the
r.h.s.). For any given temperature distribution, computed, for example,
by obtaining the asymptotic solution of eq. (1.1), the local growth

rate can be calculated at any location inside the boundary layer. We

shall return to this question in the next section.




1.3 Effect of Temperature-Dependent Thermal Conductivity

To check the effect of the temperature-dependence of the thermal
conductivity and the stability properties of the solutions obtained,
the time-dependent equation (1.1) supplemented by the boundary con-
dition (1.2) was solved numerically. The implicit method applied was
devised by W.O.Schneider /5/, whose program generator code provided
the numerical scheme used in the solution of the given initial-
boundary-value problem. It should be noted that egs. (1.1) and (1.2)
uniquely define the temperature distribution. The heat fluxes
resulting at the left and right boundaries are properties of the
solution. There are, however, two parameters with the help of which
Ql = Qw and Qr = Qpl can be adjusted to any desired value: the impurity
content or impurity density np (or the electron density ne) and the

distance between the right and left boundaries defined as the radiation

layer thickness: 2 = X, T X
In all calculations reported in this section n, = 1014 cm—3, Tl =
10 eV, and Tr = 1 keV, have been assumed, and iron was considered as

the only impurity present.

Figure 5 shows typical T, Q. and P(T) distributions for np = 5 x 101ocm'-3

and n = 0 (i.e. temperature-independent thermal conductivity, see
eq. (1.3)) ¢ The results obtained are as follows: Qpl = 9.2 W/cm2,

Q. %:0.:88:% 10™2 w/cm?, and 1 = 18.2 cm.

Keeping the same impurity density, we have assumed thermal conductivities
directly or inversely proportional to the square-root of the temperature:
n=4+0.5 and n = - 0.5, respectively. Solutions were obtained to

eq. (1.1) without trying to adjust the heat flux on the plasma side

to the original (9.2 W/cmz) value. The Qw/Qpl.é( 1 condition was re-
established by changing the 1 = *ai5 X, value. For the case n = +0.5,

Qpl = 6.95 W/cm2 (Qw = 0.03 W/cm2) and 1 = 16.5 cm were obtained. The

-0.5 are: Qpl = 13.7 W/em™ (Q _ =

respective values obtained for n e

0.03 W/cmz) and 1 = 24.5 cm. The respective distributions are shown
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For simple (temperature-independent)Alcator scaling n 0

and this expression reduces to
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i.e. the solution is stable at any perturbation wavelength, provided

oA >0, i.e. the radiation power emitted increases with increasing
temperature. (A spontaneous temperature increase is damped by increased
radiative losses). This is, however, not always the case (see Fig. 1).
As could be expected, if P(T) decreases with increasing temperature,
i.e. & £ 0, the solution becomes unstable for wavelengths exceeding
a critical value
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Since ¥ P(T)/T = dP/dT can be computed for any given radiation loss

function P(T), the maximum admissible wavelength is a unique function
of the temperature. Figure 4 shows the variation of Acrit with
temperature for iron impurity (nI =5 x 1010 cm—3).

This analysis cannot answer the question whether in a realistic boundary
layer the wavelength can locally exceed the critical value. The answer
is, however, provided by a straightforward numerical solution of the
time-dependent problem.

It should be noted, furthermore, that the net effect of a temperature-
dependent thermal conductivity cannot be assessed directly from eq. (1.14)
(n appears with opposite signs in the second and third terms on the
r.h.s.). For any given temperature distribution, computed, for example,
by obtaining the asymptotic solution of eq. (1.1), the local growth

rate can be calculated at any location inside the boundary layer. We

shall return to this question in the next section.




1.3 Effect of Temperature-Dependent Thermal Conductivity

To check the effect of the temperature-dependence of the thermal
conductivity and the stability properties of the solutions obtained,
the time-dependent equation (1.1) supplemented by the boundary con-
dition (1.2) was solved numerically. The implicit method applied was
devised by W.O0.Schneider /5/, whose program generator code provided
the numerical scheme used in the solution of the given initial-
boundary-value problem. It should be noted that egs. (1.1) and (1.2)
uniquely define the temperature distribution. The heat fluxes
resulting at the left and right boundaries are properties of the
solution. There are, however, two parameters with the help of which
Ql = Qw and Qr = Qpl can be adjusted to any desired value: the impurity
content or impurity density n; (or the electron density ne) and the

distance between the right and left boundaries defined as the radiation

layer thickness: 1 = X, T Xg.
In all calculations reported in this section n, = 1014 cm—3, Tl =
10 eV, and Tr = 1 keV, have been assumed, and iron was considered as

the only impurity present.

Figure 5 shows typical T, Q, and P(T) distributions for np = 5 x 1010cm—3

and n = 0 (i.e. temperature-independent thermal conductivity, see
ed. (1.43)) . The results obtained are as follows: Qpl = 9.2 W/cmz,
Q, = 0.88 x 10”2 W/cm?, and 1 = 18.2 cm.

Keeping the same impurity density, we have assumed thermal conductivities
directly or inversely proportional to the square-root of the temperature:
n=+0.5 and n = - 0.5, respectively. Solutions were obtained to

eq. (1.1) without trying to adjust the heat flux on the plasma side

to the original (9.2 W/cmz) value. The Qw/Qpl'G( 1 condition was re-

established by changing the 1 = X~ X4 value. For the case n = +0.5,
Qpl = 6.95 W/cm2 (Qw = 0.03 W/cmz) and 1 = 16.5 cm were obtained. The
respective values obtained for n = -0.5 are: Qpl = 13.7 W/cm2 (Qw =

0.03 W/cmz) and 1 = 24.5 cm. The respective distributions are shown



in Figs. 6 and 7. Hence with n >0 the radiation layer is shifted
towards the wall, its thickness is reduced, and the power that can
be radiated away is smaller. With n ¢0 the radiation layer moves
away from the wall, it becomes broader, and a larger heat flux can
be radiated away.

The interpretation of such behaviour is straightforward: since in
these cases the reference temperature appearing in the thermal con-
ductivity (see eq. (1.3)) is larger than the typical temperatures
associated with intense iron radiation, Tref>' Trad' the effective
thermal conductivity is reduced in the radiation zone if n> 0
(Trad/Tref)n< 1) and it increases if n< 0. Since the thickness of
the radiation layer 1 is proportional to the ratio Q/{Rad) (see eq.
(1.11)), 1 decreases if n>» 0 and increases if n < 0(<Rad) is not
affected by n).

Let us now estimate the impurity contents that are required (with

n # 0) for radiating away the same power as in the n = 0 case. As

a reference case we consider the case Qp = Qpl = 10 W/cmz, Qw/Qpl<( 1%
The solution of eq. (1.1) yields for this case (see Fig. 8):

n, = 6 x 1010 cm_3, and 1 = 16.5 cm (Qw< 0.03 W/cmz). Considering

now the cases with n = +0.5 and n = -0.5 and adjusting the impurity

density n. and the radiation layer thickness 1 until Q_ = Q F
‘3

I pl
10 W/cm2 and Qw/Qpl<< 1 are reached (as before, Tw = 10 eV, Tpl =
103 eV) we obtained the following results: with n = +0.5, n_ =

I
1.06 x 10" em™3, 1 = 11.5 cm (Fig. 9), with n = -0.5, n_ =

2.os X 1010 cm—3, l=231.0 cm (Fig. 10), i.e. a decrease o% the effective
thermal conductivity in the radiation layer can be compensated by a
larger impurity content, and vice versa. As before, the thickness of
the radiation layer is proportional to Q/ ( Rad) (Q being constant in
this case), and the radiation layer is shifted towards the wall if the

effective thermal conductivity is reduced.

Although the convergence of the time-dependent solution to a unique
asymptotic distribution defined by the time-independent boundary

conditions, irrespective of the initial distributions used and of the




occasional localized perturbations applied, is evidence of the
stability of the solution, the local growth rate was checked at

every mesh point for perturbation wavelengths 5 mm < A ¢ 50 cm by
means of eq. (1.14) applied to the asymptotic solution obtained. As
expected, the solution was found to be stable (i.e. X}( 0) in all cases
discussed, but the damping rate decreases with increasing wavelength.
The results also indicate that at long perturbation wavelengths none

of the terms appearing in eq. (1.14) can, in general, be neglected.

Note that the above results and conclusions are based on the assumption
of n, = const and np = const in the radiation layer, and are only valid
for impurities for which Trad< Tref = 0.8 keV. Nevertheless, they

illustrate the basic trend caused by the possible temperature depen-

dence of the thermal conductivity.

2. Two-Component Steady-State Boundary Layer Model

Since the minimum plasma temperature used in the previous section

(Tmin = TW = 10 eV) is likely too high for modelling temperatures in
the immediate neighbourhood of material walls, a second set of cal-
culations has been performed with Tmin = Tw = 1 eV. Since in the

temperature range T < 10 eV hydrogen radiation may no longer be neglected,
the steady-state two-component model of Goedheer /3/ and his computer
program have been used in these calculations. The special feature of :
this model is the detailed treatment of the hydrogen radiation without
the usual equilibrium assumptions, and the correspondingly detailed
computation of the ionization and recombination rates. The impurity
radiation was calculated, as before, with the help of the average ion
model of Post et al. /4/. It is realized that this is a rather crude
approximation for the impurities in the plasma boundary layer, but the
development of a non-equilibrium radiation model with due allowance
for all relevant atomic processes characterizing the impurity species

was beyond the scope of this analysis.




2.1 Steady-State Distributions

Goedheer® s model is defined by the following set of equations /6/:
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where subscripts e and a refer to electrons and neutral atoms,
respectively, Rad = RadH + RadI regresents the total radiation
losses (hydrogen and impurities), Se is the net ionization (or
recombination) rate, }C off and D off represent the effective thermal
conductivity and diffusivity, respectively, € is the momentum trans-
fer rate by elastic collisions, and n, = pa/kT. Under the steady-
state conditions assumed the electron and neutral particle fluxes
are equal and opposite: Pa = —lﬂe. The coordinate x is measured

from the wall towards the plasma center. Q represents the heat flux

towards the wall. For the transport coefficients X;ff and D gg ©X-
pressions of the form

_ bXghy 6D, Dy
xeu - m ) D@” = —:-D-;-:D-i’—b—; )

have been used




(subscripts A and B: Alcator and Bohm,b is a constant multiplier
equal to 1 or 5). The possibility of temperature-dependent trans-

port coefficients was not considered in this analysis.

Equations (2.1) to (2.5) are supplemented by the following boundary
conditions (the integration - a fourth-order Runge-Kutta procedure -
starts at the wall):

(2.6) r = r <0 ,

(2.7) Mg = Mo >0

=
=
1]
S
f=4
S
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o

(2.8)
(2.9) Q= Qu 20
(2.10) T

If it is assumed that in the immediate neighbourhood of the wall
recombination dominates over ionization (i.e. éew‘ 0), and the
temperature is a monotonically increasing function of x, the
qualitative description of the solution described by the above set

of equations is straightforward /6/:

Since practically all neutral atoms get ionized in the boundary
layer, ée first increases, reaches a positive méximum and then re-
duces to zero (see Fig. 11a). The behaviour of Se defines the
variation of the electron flux f’e (see eq. (2.1) and Fig. 11b).
Hence it follows from egs. (2.2) to (2.5) that the distributions of

n_r Pyr Do etc.,must be of the form shown in Fig. 11.The coordinates

g
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X, and X, denote the boundaries of the recombination zone and
the penetration depth (ionization length) of the neutral gas,
respectively. The exact forms of the T(x) and Q(x) distributions

depend upon the details of the nor Ns Pe’ and T distributions.

Since the values of the temperature, electron density, and the heat
flux on the plasma side are rendered by the solution, the left-hand-
side (wall) boundary values are iterated as long as the desired
(plasma) conditions are obtained on the right-hand side. A physi-
cally plausible solution must display the following property: the
neutral particle flux Fe = - Fa must become reduced to zero at the
?ame coordinate X, at which full ionization is reached (i.e.

Se(xz) = 0; the residual neutral density is determined there by

the local equilibrium conditions).

Figures 12a and 12b show typical distribution obtained for the following
set of parameters:

T = 1eVv T = 103 eV
w pl
n._ =102 cm™3 p2BA90 " PEE188LS TR
M. =2x 101° cm™2 B = 9 tesla.
aw
i 4 10 =3 ” ;
Figure 12a corresponds to N = 2.5 x 10 cm ", n_. = 0, Fig. 12b
to ng, = 2.5 x 10'° cm—3, no, = 9% 10" en”3 (constant impurity

densities were assumed for the whole region considered). The local
stopping length of charge exchange neutrals having (or produced at)

a temperature three times as high as the local thermal plasma
temperature is shown in these figures by straight lines. As can be

seen, the presence of oxygen (an impurity with low radiation temperature
compared with iron) shifts the radiation layer towards the wall. Such

a situation may be undesirable from the point of view of the cx-neutral-
wall interaction (see Fig. 12b).
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2.2 Stability of the Two-Component Boundary Layer

To obtain a crude idea regarding the stability properties of the
solutions described in sec. 2.1, the following assumptions were

made: (a) n << n_, (b) Dl /2% » VT and thus (ki) = kUOT/0x
(see Figs. 12 and 13). Introducing an effective diffusion coefficient
also for the neutral particles, the time-dependent version of egs.

(2.1) to (2.5) can thus be written in the following form (constant

transport coefficient approximation) :

(2.11) 'b—- -)ﬁ Me - ¢, = o
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Assuming now that Rad = const. T“ and Se = const. Tﬁ , 1.e.
od = d 1n Rad/dlnT, = dlnée/dlnT, and applying a linear pertur-
bation to equations (2.11) to (2.13) of the type

R = Do"’ Q ) ‘QQ = QXF({¥*L“ X) << 9» )

the following third-order equation is obtained for the growth rate Y—
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Once a steady-state solution is given, the local values of ., (3, and
D, =D ("Bn [ 0x) / (-Dn 4/ %) can be computed from the given
distributions, and the growth rate x' can be determined at every mesh

point as a functlon of the perturbation wavelength A = y/k :

As an example, the distributions corresponding to c__= 102

in Fig. 12 are reproduced in Fig. 13 in log-log scai;s. In addition,
the variation of the radiation power is also shown in this figure.

A comparison of this curve with the P(T) curves given in Figs. (5)
and (10) shows the effect of the particle fluxes and hydrogen ra-
diation in the immediate neighbourhood of the wall. The growth rate
computed by means of eq. (2.14) is also shown. As can readily be
seen, the solution may be unstable at certain stations. It is note-
worthy that the unstable regions coincide with the regions in which
the total radiation power decreases with increasing temperature, i.e.
the radiation effect also dominates in this case (see the results of
sec. 1.2, obtained in the framework of a much simpler approximation).
The wavelengths characterizing the maximum growth rates are in the
cm range. The questions whether perturbations of such wavelengths

can indeed develop in a realistic boundary layer and whether or not
the boundary layer remains stable can only be answered on the basis
of the solution of the full set of time-dependent equations (see,for

example, sec. 1.3). These calculations are yet to be performed.
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Fig. 2a: Weighted loss function integrals corresponding
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for elements referred to in Figure 1.
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Fig. 3: Conductive heat flux at the wall as a function of the
heat flux in the central plasma region computed for
hydrogen with iron impurity present (Tw = 10 eV,
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of temperature for a radiating hydrogen plasma layer
with iron impurity present.
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Fig. 11 Qualitative distributions deduced from egs. (2.1) -
to (2.10).
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Fig. 12: Parameter distributions in a plasma boundary layer with

neutral gas and iron impurity (with and without oxygen

impurity) present.
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for the case shown in Figure 12b.




	IPP 1_191 Deckblatt
	IPP 1_191 Text

